Micro/Nano Motor Navigation and Localization via Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Shared Autonomy via Deep Reinforcement Learning
In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user’s policy given their goal, and the set of possible goals the user might ...
متن کاملInverse Reinforcement Learning via Deep Gaussian Process
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Inco...
متن کاملStrategic Dialogue Management via Deep Reinforcement Learning
Artificially intelligent agents equipped with strategic skills that can negotiate during their interactions with other natural or artificial agents are still underdeveloped. This paper describes a successful application of Deep Reinforcement Learning (DRL) for training intelligent agents with strategic conversational skills, in a situated dialogue setting. Previous studies have modelled the beh...
متن کاملStructure Learning in Motor Control: A Deep Reinforcement Learning Model
Motor adaptation displays a structure-learning effect: adaptation to a new perturbation occurs more quickly when the subject has prior exposure to perturbations with related structure. Although this ‘learning-to-learn’ effect is well documented, its underlying computational mechanisms are poorly understood. We present a new model of motor structure learning, approaching it from the point of vie...
متن کاملA Critical Investigation of Deep Reinforcement Learning for Navigation
The navigation problem is classically approached in two steps: an exploration step, where mapinformation about the environment is gathered; and an exploitation step, where this information is used to navigate efficiently. Deep reinforcement learning (DRL) algorithms, alternatively, approach the problem of navigation in an end-to-end fashion. Inspired by the classical approach, we ask whether DR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Theory and Simulations
سال: 2020
ISSN: 2513-0390,2513-0390
DOI: 10.1002/adts.202000034